The Neurophysiology of Giftedness, a Literature Review

Screen Shot 2019-12-02 at 9.43.29 AM.png

PURPOSE: This poster presents a literature review of the neurophysiological underpinnings associated with giftedness. Giftedness is defined as a set of traits: rapid information processing, the ability to hold a wide range of knowledge, the ability to make inter-subject connections with ease, extreme curiosity and desire to learn, superior memory, and cognitive control (Geake, 2007). One limitation of this presentation is that giftedness is a broad term. Future investigators may benefit from specifying their searches to mathematical, verbal, emotional, etc. gifted categorizations.

METHODS: 

  • Resources were winnowed by keyword inclusions of: gifted, giftedness, and neurophysiology. 

  • Sources that did specify ‘gifted’ or ‘giftedness’ and also featured ‘IQ’ or ‘High IQ’ were included. 

  • Once ‘gifted’ specific sources were identified, articles discussing the role of the prefrontal cortex (PFC) as it relates to superior cognition were sought.

  • Keyword specifications were not maintained when searching for articles related to PFC and superior cognition.

  • Sources which did not specify the term ‘gifted’ or ‘giftedness’ were intentionally excluded as they often favored the terms ‘IQ’ or ‘High IQ’, which hold certain sociocultural limitations not within the scope of this presentation. 

RESULTS:

FUNCTION

It takes gifted people less time to process information and they have less overall activation which promotes more complex neural schemas. These more complex neural schemas and reduced latent inhibition promote fluid analogising: the ability to generate more creative solutions and hold more possibilities. Gifted individuals also tend to have heightened bilateral alpha activity during fluid reasoning tasks and in eyes-open event related potential (ERP) tasks: 

Alexander, J. E., O’Boyle, M. W., & Benbow, C. P. (1996). Developmentally advanced 

EEG alpha power in gifted male and female adolescents. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 23(1/2), 25–31.

Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499–506.

Chen, A. & Buckley, K. (1988). Neural Perspectives of Cerebral Correlates of Giftedness. International Journal of Neuroscience, 41(1-2), 115-125. Retrieved from  https://doi.org/10.3109/00207458808985748

Dombrowski, S. & Mrazik, M. (2010). The neurobiological foundations of giftedness. Roeper Review: A Journal on Gifted Education. 32(4), 224-234. DOI: 10.1080/02783193.2010.508154

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N. & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457- 460.

 Geake, J. G. (2005). The neurological basis of intelligence: Implications for education. Gifted and Talented, 9(1), 8.

Geake J.G. (2009) Neuropsychological characteristics of academic and creative giftedness. In: Shavinina L.V. (eds) International Handbook on Giftedness (pp. 261-273). Retrieved from https://doi.org/10.1007/978-1-4020-6162-2_11

Geake, J. G. & Dodson, C. S. (2005). A neuro-psychological model of the creative intelligence of gifted children. Gifted & Talented International, 20(1), 4-16

Geake, J. G. & Hansen, P. C. (2006). Structural and functional neural correlates of high creative intelligence as determined by abilities at fluid analogising. Society for Neuroscience Annual Meeting, Atlanta, Georgia,17 October.

Geake, J. G. & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555-564.

Gray, J. R. & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(June), 471-482.

Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology,    11, 405–14. 

Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. Paek, J.,et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.

Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.

Hofstadter, D. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.). The analogical mind: Perspectives from cognitive science (pp. 499-538) Cambridge, MA: MIT Press.

Jaušovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25 (2), 253-257. Retrieved from https://doi.org/10.1016/S0191-8869(98)00039-7

Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G. and Xu, S. (2003). The neural substrate of analogical reasoning: an fMRI study. Brain Research: Cognitive Brain Research, 17, 527-534.

O’Boyle, M. W. (2008). Mathematically gifted children: Developmental brain characteristics and their prognosis for well-being. Roeper Review, 30, 181–186.

O'Boyle, M. W., Cunnington, R., Silk, T., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan, G. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25, 583-587.

Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 43-63

Stepanova, K., Vavrecka, M., Durdiakova, J., Lhostka, L. (2015). Differences of EEG signal between gifted and average adolescents. Clinical Neurophysiology, 126(3), e45. Retrieved from https://doi.org/10.1016/j.clinph.2014.10.201  

Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A. & 

Honda, M. (2000). Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173-197.

Gifted individuals have more bilateral communication between the two hemispheres. More communication between the two hemispheres allows for more fluid analogizing. A gifted person’s success at specific intellectually demanding tasks is significantly determined by how well their brain enables fluid analogising as a fundamental cognitive process:

Dombrowski, S. & Mrazik, M. (2010). The neurobiological foundations of giftedness. Roeper Review: A Journal on Gifted Education. 32(4), 224-234. DOI: 10.1080/02783193.2010.508154

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J. & 

Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 1136-1149.

Geake, J. G. & Dodson, C. S. (2005). A neuro-psychological model of the creative intelligence of gifted children. Gifted & Talented International, 20(1), 4-16

Geake J.G. (2009) Neuropsychological characteristics of academic and creative giftedness. In: Shavinina L.V. (eds) International Handbook on Giftedness (pp. 261-273). Retrieved from https://doi.org/10.1007/978-1-4020-6162-2_11

Gray, J. R. & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(June), 471-482.

Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.

Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148-151

Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S. & Holyoak, K. 

J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12, 477-485.

O'Boyle, M. W., Benbow, C. P. & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11(4), 415-443

Parsons, L. M. & Osherson, D. (2001). New evidence for distinct right and left brain systems for deductive versus probabilistic reasoning. Cerebral Cortex, 11, 954-965.

Singh, H. & O'Boyle, M. W. (2004). Interhemispheric interaction during global-local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18(2), 671-677.

Strange, B. A., Henson, R. N., Friston, K. J. & Dolan, R. J. (2001). Anterior prefrontal cortex mediates rule learning in humans. Cerebral Cortex, 11, 1040-1046.

STRUCTURE

Heightened fronto-parietal network activation helps gifted individuals maintain task focus

Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829.

Dombrowski, S. & Mrazik, M. (2010). The neurobiological foundations of giftedness. Roeper Review: A Journal on Gifted Education. 32(4), 224-234. DOI: 10.1080/02783193.2010.508154

Geake, J. G. (2005). The neurological basis of intelligence: Implications for education. Gifted and Talented, 9(1), 8.

Geake J.G. (2009) Neuropsychological characteristics of academic and creative giftedness. In: Shavinina L.V. (eds) International Handbook on Giftedness (pp. 261-273). Retrieved from https://doi.org/10.1007/978-1-4020-6162-2_11

Geake, J. G. & Dodson, C. S. (2005). A neuro-psychological model of the creative intelligence of gifted children. Gifted & Talented International, 20(1), 4-16

Geake, J. G. & Hansen, P. C. (2006). Structural and functional neural correlates of high creative intelligence as determined by abilities at fluid analogising. Society for Neuroscience Annual Meeting, Atlanta, Georgia,17 October.

Gray, J. R., Chabris, C. F. & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316-322

Gray, J. R. & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(June), 471-482. 

Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.

Hofstadter, D. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.). The analogical mind: Perspectives from cognitive science, MIT Press, Cambridge, MA, pp. 499-538.

Vandervert, L. R. & Liu, H. (2008). How working memory and the cognitive cerebellum collaboratively produce the child prodigy. In L Shavinina (Ed) International Handbook of Giftedness (pp. 295-314). Springer Science.

Heightened posterior-parietal activations involved in forming conceptual inter-relationships, especially of a quasi-spatial representation. This also supports heightened unconscious processing: 

Dombrowski, S. & Mrazik, M. (2010). The neurobiological foundations of giftedness. Roeper Review: A Journal on Gifted Education. 32(4), 224-234. DOI: 10.1080/02783193.2010.508154

 Geake, J. G. (2005). The neurological basis of intelligence: Implications for education. Gifted and Talented, 9(1), 8.

Geake J.G. (2009) Neuropsychological characteristics of academic and creative giftedness. In: Shavinina L.V. (eds) International Handbook on Giftedness (pp. 261-273). Retrieved from https://doi.org/10.1007/978-1-4020-6162-2_11

Gray, J. R. & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(June), 471-482.

Koziol, L. , Chidekel, D., Budding, D. (2010). Adaption, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. The Cerebellum, 9(4), 499-529. Retrieved from https://link.springer.com/article/10.1007%2Fs12311-010-0192-7

Luria, A. R. (1973). The working brain. Basic Books, New York.

Zhang, Q., Shi, J., Luo, Y., Zhao, D. & Yang, J. (2006). Intelligence and information processing during a visual search task in children: an event-related potential study. Neuroreport, 17(7), 747-752.

Higher grey matter ratio in the PFC results in high levels of executive functioning, working memory, and enhanced bilaterality of an extended cortical network. This higher PFC functioning then allows for more, mostly unconscious, attentional focus and selective inhibition: 

Chen, A. & Buckley, K. (1988). Neural Perspectives of Cerebral Correlates of Giftedness. International Journal of Neuroscience, 41(1-2), 115-125. Retrieved from  https://doi.org/10.3109/00207458808985748

 Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J. & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 1136-1149.

Dombrowski, S. & Mrazik, M. (2010). The neurobiological foundations of giftedness. Roeper Review: A Journal on Gifted Education. 32(4), 224-234. DOI: 10.1080/02783193.2010.508154

Frangou, S., Chitins, X., & Williams, S. C. (2004). Mapping IQ and gray matter density in healthy young people. NeuroImage, 23(3), 800–805.

Geake, J. G. (2005). The neurological basis of intelligence: Implications for education. 


Geake J.G. (2009) Neuropsychological characteristics of academic and creative giftedness. In: Shavinina L.V. (eds) International Handbook on Giftedness (pp. 261-273). Retrieved from https://doi.org/10.1007/978-1-4020-6162-2_11

Geake, J. G. & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555-564.

Geake, J. G. & Hansen, P. (2006). Structural and functional neural correlates of high creative intelligence as determined by abilities at fluid analogising. Society for Neuroscience Annual Meeting, Atlanta, Georgia,17 October.

Gray, J. R., Chabris, C. F. & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316-322

Gray, J. R. & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(June), 471-482.

Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23(1), 425-433.

Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.

Hofstadter, D. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.). The analogical mind: Perspectives from cognitive science, MIT Press, Cambridge, MA, pp. 499-538.

Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148-151.

Koziol, L. , Chidekel, D., Budding, D. (2010). Adaption, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. The Cerebellum, 9(4), 499-529. Retrieved from https://link.springer.com/article/10.1007%2Fs12311-010-0192-7

Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S. & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12, 477-485.

Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., Lee, S., & Kim, K. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29(2), 578-86

Parsons, L. M. & Osherson, D. (2001). New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex, 11, 954-965.

Strange, B. A., Henson, R. N., Friston, K. J. & Dolan, R. J. (2001). Anterior prefrontal cortex mediates rule learning in humans. Cerebral Cortex, 11, 1040-1046.

CONCLUSION & SUMMARY: Gifted individuals process information differently due to specific neurophysiological underpinnings: 

  • More complex neuronal schemas which promote fluid analogising

  • Higher alpha power

  • Less cortical activation when receiving apt stimulation

  • Up to 6% higher gray matter ratio

  • Enhanced bilateral communication 

  • Heightened fronto-parietal activation during task performance

  • More efficacious working memory, a result of higher PFC activation

Gifted individuals take in more information, more efficiently, and are able to direct attention to promote conscious and unconscious information processing. The ability to take in and hold more information also comes with social-emotional struggles, i.e. peer relationship struggles, emotional sensitivities, etc. 


CONSIDERATIONS FOR FUTURE RESEARCH: 

  • Find more socio-cultural representation in subject pool, e.g. age, ethnicity, gender, etc.

  • Find an alternative method to standardized tests as a means of finding participants.

  •  Provide discussions of limitations in sample pools as related to using standardized measures as a participant screener.

Image: Dopplemayer, M., Klimesch, W., Stadler, w., Pollhuber, D., & Heine, C., (2002). EEG alpha power and intelligence. Intelligence 30(3), 289-302. Retrieved from https://doi.org/10.1016/S0160-2896(01)00101-5

This handout and poster were created by Madeline Stein © for a Poster Presentation at the Association for Applied Psychophysiology and Biofeedback’s Annual Meeting 2020